Investigating indicator minerals for magmatic sulfide deposits using LA-ICP-MS and μXRF

Dr. Louise Schoneveld | Postdoctoral Fellow
9 April 2019

Acknowledgements: Steve Barnes, Margaux Le Vaillant, David Paterson, Chris Ryan, Rais Latypov, Sophie Vuleta, Monica LeGras, Marina Yudovskaya
Accumulation of immiscible sulfide liquids from silicate magmas

Some of the world’s most valuable ore deposits – ~trillion dollars worth of metals (Ni, Cu, PGE) in the Norilsk camp

Source of 100% of world’s platinum (and associated elements), 38% of world’s Ni
Magmatic Ni-Cu Sulfide Deposits

- Occur in small mafic-ultramafic bodies (very common)
- Few are mineralised
- Indicator minerals would be very useful!

Why do we need indicators minerals

- To determine if a target is likely mineralised or unmineralised with the least drilling ($$) possible

What makes a good indicator mineral?

- Chemistry indicative of mineralisation
- Resistant to weathering
- Easily identified and separated
Ruthenium in Chromite
Locmelis et al. 2018

If sulphides are present Chromite will have low (<150 ppb) Ru

Noril’sk-Talnakh – The highest single resource of Ni-Cu-PGE in the world

Role of degassing of the Noril’sk nickel deposits in the Permian–Triassic mass extinction event

Margaux Le Vaillant*, Stephen J. Barnes*, James E. Mungall*, and Emma L. Mungall*
*Commonwealth Scientific and Industrial Research Organisation, Mineral Resources, Kensington, WA 6151 Australia;
†Department of Earth Sciences, University of Toronto, Toronto, ON M5S 3B3, Canada; and
‡Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada

Oxides as a possible indicator- Noril’sk case study

• Chromite chemistry

Trace elements – Noril’sk Chromite

- **Shape**: Noril'sk 1, Talnakh, Kharaelakh, Barren
- **Colour**: sulphide, silicate, pyroxene, bubble
- **Enclosing Phase**: bubble, pyroxene, silicate

Graphs showing the distribution of Mg/(Mg+Fe^2+): Ti_ppm, Mn_ppm, Co_ppm, Zn_ppm, V_ppm, Cr_ppm.
Thus far...

Ru in Chromite below detection limit
(<5-10 ppb)
LA-ICP-MS
Laser ablation inductively coupled plasma mass spectrometer
LA-ICP-MS

Laser ablation

193nm ArF Excimer Laser – Photonmachines/Teledyne + Agilent 7700 quadrupole ICP-MS

Trace Elements in minerals, *in-situ*

Pros
- Limits of detection of ppb
- >30 isotopes at once
- Rapid analysis
- Fully quantitative
- Individual mineral analysis
- Minimal Sample prep.
- U-Th-Pb isotope dating system

Cons
- Destructive (<150μm spot)
- Non-Portable
Quantitative Maps

- Spatially resolved trace element data
- Can be quantitative or semi-quantitative
- Low detection limits
- Only destructive to top few microns
- Can measure “tricky” elements like Lithium
Case Study – Lithium in Pisoliths

Perfect pair to other techniques

X-ray mapping + microscope images can be directly loaded into the software

• Target key areas,
• Easy navigation
• Allows for spatial context
μXRF mapping with Maia

micro X-ray Fluorescence mapping

MINERAL RESOURCES
www.csiro.au
Microbeam X-Ray Fluorescence Mapping

• Technique for making elemental maps of rock slabs and polished sections from micron to decimetre scale

• Variety of systems in current use:
 • synchrotron based (1-2 micron resolution) – thin sections to slabs
 • Lab based - ~20-40 micron resolution, large samples (drill core, cut slabs)
 • Commercial e.g. Bruker Tornado, custom – CSIRO Maia Mapper

Applications:
• Quantitative mineralogy
• Textural analysis of rocks and ores
• Geochemical/petrogenetic studies
Maia Mapper

• Exploits new developments
 • Excillum high flux, liquid metal micro-focus source
 • New X-ray lenses for higher energies >20 keV

Maia Mapper: high definition XRF imaging in the lab

Comparison of microbeam scanning/mapping techniques

<table>
<thead>
<tr>
<th>Technique</th>
<th>Spatial resolution (pixel size) microns</th>
<th>Dwell times (ms)</th>
<th>Scan time per cm² (hours)</th>
<th>Lightest element mappable</th>
<th>Limit of detection (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMP/SEM (e.g. MLA)</td>
<td>1-2</td>
<td>10</td>
<td>100</td>
<td>C</td>
<td>1000-10,000</td>
</tr>
<tr>
<td>LA-ICPMS</td>
<td>10-50</td>
<td>10</td>
<td>2</td>
<td>Li</td>
<td>0.01</td>
</tr>
<tr>
<td>Tornado XFM</td>
<td>40</td>
<td>10</td>
<td>.3</td>
<td>Al</td>
<td>1000</td>
</tr>
<tr>
<td>Synchrotron XFM with Maia</td>
<td>1-2</td>
<td>1</td>
<td>3</td>
<td>Si</td>
<td>100</td>
</tr>
<tr>
<td>Maia Mapper</td>
<td>30</td>
<td>5</td>
<td>.2</td>
<td>Si</td>
<td>100</td>
</tr>
</tbody>
</table>
Platreef (world’s major Pt resource) S Africa
Olivine inside pyroxene oikocrysts

A new indicator?
Possible new indicator for magmatic sulphide mineralisation – zoned pyroxene
“Barren”
Zoning you can see

Kotalahti - Finland

Aus. Synchrotron
Log Cr Fe Ca

Desktop XRF

Bruker Tornado
Diagram modified from Barnes et al. (2016)

Thank you

Feel free to contact me if you have further questions

Louise.Schoneveld@csiro.au

@L_Schoneveld
https://orcid.org/0000-0002-9324-1676
http://www.linkedin.com/in/Louise-Schoneveld